Search results for "Generalized Dirichlet distribution"

showing 3 items of 3 documents

A Parametric Dirichlet Problem for Systems of Quasilinear Elliptic Equations With Gradient Dependence

2016

The aim of this article is to study the Dirichlet boundary value problem for systems of equations involving the (pi, qi) -Laplacian operators and parameters μi≥0 (i = 1,2) in the principal part. Another main point is that the nonlinearities in the reaction terms are allowed to depend on both the solution and its gradient. We prove results ensuring existence, uniqueness, and asymptotic behavior with respect to the parameters.

Control and Optimization01 natural sciencesElliptic boundary value problemsymbols.namesakeDirichlet eigenvalueSettore MAT/05 - Analisi MatematicaDirichlet's principleBoundary value problemparametric problem0101 mathematicssystem of elliptic equationsMathematicsDirichlet problemDirichlet problem010102 general mathematicsMathematical analysisDirichlet's energyMathematics::Spectral Theory(pq)-LaplacianComputer Science Applications010101 applied mathematicsGeneralized Dirichlet distributionDirichlet boundary conditionSignal ProcessingsymbolsAnalysis
researchProduct

L∞-variational problem associated to dirichlet forms

2012

Pure mathematicsDirichlet formGeneral MathematicsMathematical analysisDirichlet L-functionDirichlet's energyClass number formulaDirichlet distributionsymbols.namesakeGeneralized Dirichlet distributionDirichlet's principlesymbolsDirichlet seriesMathematics
researchProduct

Dirichlet Boundary Value Problem for the Second Order Asymptotically Linear System

2016

We consider the second order system x′′=f(x) with the Dirichlet boundary conditions x(0)=0=x(1), where the vector field f∈C1(Rn,Rn) is asymptotically linear and f(0)=0. We provide the existence and multiplicity results using the vector field rotation theory.

Article SubjectDirichlet conditionslcsh:MathematicsApplied Mathematics010102 general mathematicsMathematical analysisMixed boundary conditionDirichlet's energylcsh:QA1-93901 natural sciences010101 applied mathematicssymbols.namesakeDirichlet eigenvalueGeneralized Dirichlet distributionDirichlet's principleDirichlet boundary conditionsymbolsBoundary value problem0101 mathematicsAnalysisMathematicsInternational Journal of Differential Equations
researchProduct